Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Space Res ; 73(2): 1331-1348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38250579

ABSTRACT

The identification of crop diversity in today's world is very crucial to ensure adaptation of the crop with changing climate for better productivity as well as food security. Towards this, Hyperspectral Remote Sensing (HRS) is an efficient technique based on imaging spectroscopy that offers the opportunity to discriminate crop types based on morphological as well as physiological features due to availability of contiguous spectral bands. The current work utilized the benefits of Airborne Visible Infrared Imaging spectrometer- New Generation (AVIRIS-NG) data and explored the techniques for classification and identification of crop types. The endmembers were identified using the Geo-Stat Endmember Extraction (GSEE) algorithm for pure pixels identification and to generate the spectral library of the different crop types. Spectral feature comparison was done among AVIRIS-NG, Analytical Spectral Device (ASD)-Spectroradiometer and Continuum Removed (CR) spectra. The best-fit spectra obtained with the Reference ASD-Spectroradiometer and Pure Pixel spectral library were then used for crop discrimination using the ten supervised classifiers namely Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), Support Vector Machine (SVM), Minimum Distance Classifier (MDC), Binary Encoding, deep learning-based Convolution Neural Network (CNN) and different algorithms of Ensemble learning such as Tree Bag, AdaBoost (Adaptive Boosting), Discriminant and RUSBoost (Random Under Sampling). In total, nine crop types were identified, namely, wheat, maize, tobacco, sorghum, linseed, castor, pigeon pea, fennel and chickpea. The performance evaluation of the classifiers was made using various metrics like Overall Accuracy, Kappa Coefficient, Precision, Recall and F1 score. The classifier 2D-CNN was found to be the best with Overall Accuracy, Kappa Coefficient, Precision, Recall and F1 score values of 89.065 %, 0.871,87.565%, 89.541% and 88.678% respectively. The output of this work can be utilized for large scale mapping of crop types at the species level in a short interval of time of a large area with high accuracy.

2.
Heliyon ; 7(7): e07439, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278031

ABSTRACT

Predictive modeling with remotely sensed data requires an accurate representation of spatial variability by ground truth data. In this study, we assessed the reliability of the size and location of ground truth data in capturing the landscape spatial variability embedded in the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) hyperspectral image in an agricultural region in Anand, India. We derived simulated spectral vegetation and soil indices using Gaussian simulation from AVIRIS-NG image for two point-location datasets, (1) ground truth points from adaptive sampling and (2) points from conditional Latin Hypercube Sampling (cLHS). We compared values of the simulated image indices against the actual image indices (measured) through the analysis of mean absolute errors. Modeling the variogram of the measured indices with the hyperspectral image in high spatial resolution (4m), is an effective way to characterize the spatial heterogeneity at the landscape level. We used geostatistical techniques to analyze the shapes of experimental variograms in order to assess whether or not the ground truth points, when compared against the cLHS-derived points, captured the spatial structures and variability of the studied agricultural area using measured indices. In addition, we explored the capability of the variogram by running tests in different point sample sizes. The ground truth and cLHS datasets were able to derive equivalent values for field spatial variability from image indices, according to our findings. Furthermore, this research presents a methodology for selecting spectral indices and determining the best sample size for efficiently replicating spatial patterns in hyperspectral images.

SELECTION OF CITATIONS
SEARCH DETAIL
...